2nd Workshop on Revision of Threshold Value of Minerals Beneficiation Studies On Iron Ores of Eastern India Sector

by

Dr. Dillip Ranjan Kanungo

Indian Bureau of Mines, Nagpur

Noamundi, 21st August, 2017

INTRODUCTION

- □ According to industry forecasts, the global demand for iron ore is expected to accelerate in the future.
- □ The global demand for iron ore is expected to grow at the rate of 10% per annum.
- □ India also possesses the **7th** largest reserves of iron ore (7000 million tonnes).
- □ As per the current consumption rank, India has proven reserves for 35 - 40 years for iron ore.
- □ Significant mineral potential still untapped in India
- □ Unproven 'resources' are more than twice the proven 'reserves'
- <u>Total Resources</u>: 25 Billion Tonnes Reserves Remaining Resources 28% 72%

BENCH SCALE BENEFICIATION STUDIES ON IRON ORE SAMPLES FROM EASTERN SECTOR CARRIED OUT BY INDIAN BUREAU OF MINES

BENEFICIATION STUDIES ON SAMPLES FROM INDUSTRY

Tantra-Raikela-Bandhal (TRB Mines), Tensa, Dist. Sundargarh, Odisha, from M/s Jindal Steel Power Ltd.

Original Assay %		Results	after Benefi	ciation	Process Adopted
		Conc.	Fe(T)	Wt%	
		Assay %	Recovery	Yield	
Sample No	.1				
Fe(T)	56.18	64.48			Jigging at
FeO	0.93	-	39.3%	34.6	-10+1mm size
SiO2	4.93	2.50			
Al2O3	5.91	2.90			
LOI	8.07	1.97			
Sample No	.2				
Fe(T)	52.48	63.45			Jigging
Al2O3	8.11	2.68	37%	30.4	&
SiO2	8.57	2.47			Tabling
LOI	7.03	2.88			

Kasia Iron & Dolomite Mine, Dist. Keonjhar, Orissa, M/s Essel Mining and Industries Ltd.

Original Assay%		Resul	ts after Bene	Process Adopted	
		Conc.	Fe(T)	Wt% Yield	Trocess Adopted
		Assay %	Recovery		
Fe (T)	51.49	62.93			
SiO2	11.47	4.03	35.1%	28.8	Jigging
Al2O3	7.83	2.72			688
CaO	0.09	-			
MgO	0.01	-			
LOI	6.30	2.47			
Jilling Mine, Dist.		Keonjhar	; Orissa, M	/s Essel Min	ing and Industries
Ltd.					_
Fe (T)	49.73	63.99			Screening,
SiO2	13.00	3.67	26.5%	26.6	Scrubbing, Tabling
Al2O3	7.31	2.04			
TiO2	0.26				
LOI	5.71	1.61			

Oraghat, Keonjhar dist., Odisha for M/s Rungta Sons Pvt. Ltd.

Original Assay%		Results after Beneficiation			Process Adopted		
		Conc.	Fe(T)	Wt%			
		Assay	Recovery	Yield			
		%					
Fe (T)	53.50	62.38					
SiO2	8.30	2.85	38%	32.4	Grinding, Tabling,		
Al2O3	7.20	3.18			WHIM		
Mn	0.05						
LOI	7.35						
Sanindpur, Keonjhar dist., Odisha, for M/s Rungta Son's Pvt. Ltd.							
Fe(T)	57.12	63.53					
SiO ₂	5.81	2.23	42.5%	38.2	Screening, Jigging &		
Al_2O_3	5.75	2.48			Tabling		
LOI	5.98	3.82					

Combined slimes from Kiriburu iron beneficiation plant, M/s SAIL, West Singhbhum dist., Jharkhand (RMDS).

Original Assay%		Results	after Benefic	Duccess Adouted	
		Conc.	Fe(T)	Wt%	Process Adopted
		Assay %	Recovery	Yield	
Fe	45.25	60.26			Mozley MGS,
Al_2O_3	11.64	4.86	32.10%	24.1	Mozley Mineral
SiO ₂	11.91	3.43			Separator
LOI	9.37	4.52			
TiO ₂	0.65	0.26			
Р	0.06	0.04			
Mn	0.09	0.08			
Low grade	iron ore	sample from	n M/s Sri Ra	am Minera	l Company,
Chaibasa,	Singhbh	um(W), Jha	rkhand		
Fe(T)	41.85	61.42			Gravity Separation
SiO ₂	17.10	5.47	33.1	22.6	(Jigging, Tabling)
Al_2O_3	13.62	4.50			
P	0.02	0.04			
LOI	6.88	6.56			

Iron ore fines sample from Barbil region, Odisha for M/s Jagnathpur Steel Limited, Ranchi, Jharkhand.

Original Assay%		Result	s after Benef		
		Conc.	Fe(T)	Wt% Yield	Process Adopted
		Assay %	Recovery		
Fe(T)	58.15	64.22			
SiO ₂	7.05	2.91	69.7%	63.5	Gravity &
Al_2O_3	4.39	2.08			Magnetic
LOI	4.30	2.78			separation
Limited '	Tests, C	Dre Fines	from cru	isher plant.	Barpada, Dist.
Keonjahai	r, M/s Tu	lip Mines (P) limited,	_	-
Fe(T)	58.30	60.14			Gravity separation
Al ₂ O ₃	5.14	2.00	34.3%	30.6	(Tabling)
SiO ₂	3.71	1.09			
LOI	6.81	3.71			
	Fe(T)	60.11			Magnetic
	Al ₂ O ₃	4.20	75.5%	78.3	separation
	SiO ₂	2.82			WHIMS
	LOI	6.51			

BENCH SCALE BENEFICIATION STUDIES ON EXPLORATION SAMPLES (G2 Stage)

Mendhamaruni Block, Dist. Sundergarh, from GSI, Odisha

Original Assav%		Result	s after Benef	Process Adopted	
		Conc. Assay%	Fe(T) Recovery	Wt% Yield	
		1 st Route			Screening,
Fe(T)	60.26	63.45			Classification, Tabling
SiO ₂	5.00	3.05	60.2	57.2	and Multi gravity
Al ₂ O ₃	4.23	2.75			separation
Mn(T)	0.14				
LOI	3.54	2.56			
		Alternate Route			Stage grinding,
Fe(T)		64.62			Classification followed
SiO ₂		2.43	53.8	50.5	by Tabling and MGS
Al ₂ O ₃		2.26			
LOI		2.43			

Mineralogical Studies – Modal Distribution & Liberation Characteristics

Minerals/ Approx%	Original	Table Conc.(- 50#)	MGS Conc.	Table Tails
Hematite	45 - 50	~70	~75	25 - 30
Goethite+Limonite	35 - 40	~25	15 – 20	55 - 60
Clay (Kaolinite)	5-8	1-2	1 – 2	1-2
Gibbsite	3 – 5	1 – 2	1 – 2	3 – 4
Quartz	2 – 3	2 – 3	~2	4 – 5
Psilomelane/ Manganomelane	1 – 2	Majority of the hematite and	Hematite grains are fine grained in size,	Hematite grains are extremely fine
Magnetite(Martsd)	1 – 2	goethite grains are free from	some of the grains also carry minute	grained and are embedded in
Mica (Muscovite)	Traces	number of grains	silicates	groundmass. Clay
Garnet	Trcaes	carry fine grained inclusions of		is intermixed with iron
Tourmaline	Traces	silicates		oxides/hydroxides
Amphibole	Traces			

PHOTOMICROGRAPHS

-65# Original Sample:

Quartz and gibbsite grains are free from interlocking but carry minute inclusions of iron oxides (Transmitted light/ Crossed Nicol).

-65# Original :

Distribution of hematite and goethite in limonitic ground mass(matrix).

Note: Preponderance of thin needle like grains and fibrous aggregate of hematite.

(Reflected Light/Uncrossed/Oil)

PHOTOMICROGRAPHS

MGS Concentrate:

Granular aggregates of hematite within the ground mass of limonite. Intricate association of hematite with cryptocrystalline goethite and gangue. (Reflected Light/Uncrossed/Oil)

Table Concentrate:

Presence of fine granular aggregates of hematite intermixed with goethite and silicate gangue. *Note*: Intricate association/ intergrowth of hematite with crystalline goethite (Reflected Light/Uncrossed/Air)

X-Ray Diffractogram of original Iron Ore sample

TG-DTA graph: Quantitative estimation of goethite, kaolinite and gibbsite in the the iron ore sample

Kalamang Block, Dist. Sundergarh, from GSI, Bhubaneswar, Odisha

Original Assay%		Results after Beneficiation			Process Adopted
0		Conc.	Fe(T)	Wt% Yield	
		Assay %	Recovery		
			-30 mesh s		
Fe(T)	61.14	64.12			Classification,
SiO ₂	4.25	2.31	61%	58.3	Tabling and MGS
Al ₂ O ₃	3.43	2.01			
LOI	3.96	3.13			
		-70 mesh size			
Fe(T)	61.14	64.01			
SiO ₂	4.25	2.30	68.7%	65.8	
Al ₂ O ₃	3.43	1.83			
LOI	3.96	3.15			

Gandhalpada Block, Dist. Keonjhar (Drill Core samples, CBG) from, GSI, Bhubaneswar, Odisha

Original Assay%		Results after Beneficiation			Process Adopted
0	·	Conc.	Fe(T)	Wt% Yield	
		0⁄0	Recovery		
		С	omposite Co		
Fe(T)	56.78	64.13			Dry screening,
SiO ₂	5.62	1.99	48.7	43.2	Jigging, MGS,
Al ₂ O ₃	6.71	2.78			Classification , Tabling
LOI	5.10	2.75			
			Conc. II		
Fe(T)		63.75			
SiO ₂		2.12	55.3	49.3	
Al ₂ O ₃		2.99			
LOI		2.90			

Rengalaberha North-East Block, Dist. Keonjhar (Drill Core sample, CBR) from GSI, Bhubaneswar, Odisha.2143/F/NC

Original Assay%		Resu	ilts after Be	Process Adopted		
		Conc. Assay%	Fe(T) Recovery	Wt% Yield		
		- 6n	nm+100mes	Crushing,		
Fe(T)	58.42	64.26			Dry screening,	
SiO ₂	6.73	1.81	25.7%	23.5	Jigging, WHIMS,	
Al ₂ O ₃	3.70	3.08			MGS, conc.	
LOI	4.28	3.03				
		-100	mesh screen	Screened over		
Fe(T)	58.42	64.00			100mesh.	
SiO ₂	6.73	1.43	17.4%	15.90		
Al_2O_3	3.70	2.95				
LOI	4.28	3.40				

ELECTRON PROBE MICRO ANALYSIS (EPMA) STUDY

Different case studies are presented wherein association of aluminous minerals with iron oxides/hydroxides directs the beneficiation route to be adopted

I. Case Study: It is impossible to reduce alumina by physical processes of separation

(BSE) image showing very fine inclusions of gibbsite (2 to 20 micron size, dark) within individual hematite grains

II. Case Study: Amenability to reduce alumina by physical processes of separation is less

(BSE) image showing intimate association between haematite grains (bright) and gibbsite (dark)

III. Case Study: Amenability to reduce alumina by physical processes of separation is more

Sandwitching of clear haematite grains with gibbsite. Further grinding clan liberate haematite. Note that they are very clear.

IV. Case Study: Amenability to reduce alumina by physical processes of separation is more

Here aluminous minerals are highly associated with goethite and limonite compared to hematite. Hence, concentration of hematite can reduce the alumina content.

V. Case Study: High grade ore

Hematite is associated with aluminous gangue to a very less extent and can be liberated by further grinding.

VI. Fine Powdery (Blue-Dust) Iron ore Typical Micaceous Hematite or Specularite

BSE image by EPMA revealing the thorough association between iron minerals (white) and silicate gangue (gray).

Fine Powdery (Blue-Dust) Iron ore Typical Micaceous Hematite or Specularite

EPMA-BSE image demonstrating the character of the sample wherein iron ore minerals (white) are embedded within silicate host phases (gray) even up to a size of <20 microns. Platy/flaky type hematite is soft & loosely bonded, amenable to beneficiation.

SUMMARY

- Major alumina contributing mineral in eastern Indian iron ores include gibbsite, boehmite, clay (kaolinite, montmorillonite) and to some extent mica (muscovite and biotite).
- □ Identification of these minerals, their proportion, mode of occurrence and grain size determination dictates Fe : Al in the given sample.
- □ Mineralogy of the sample comprises predominantly hematite, followed by goethite and limonite interlocked/intermixed with gibbsite and clay.
- □ EPMA/SEM studies have revealed that alumina contributing minerals such as gibbsite and clay are present in intimate association with the hematite at micron size level and inhibiting the reduction of alumina content to the desired level, in some of the ores.

Way Forward

✓In view of the complex mineralogy of Indian Iron Ores, evaluation of threshold value for deposit/sector-wise may be looked up, which can be assessed based on detailed mineralogical characterization & amenability process test-work.

✓To maintain alumina / silica ratio within 5% limit for steel making, adequate focus has to be given on technological up-gradation for utilizing low grade ores.

 \checkmark Sub-grade or marginal grade ores (-60 +45% Fe) staked in **dumps**, together with the **staked fines** (-10 mm) and **slimes** (in tailing ponds) containing significant **tonnages of valuable hematite** are presently locked up, value addition for its utilization is the need of the hour.

✓ Beneficiation and Pelletisation and capacity augmentation of pelletisation and sintering facilities to utilize low grade fines should become a priority area.

